1成果简介

磷酸铁锂(LiFePO4)结构稳定、成本低、安全性高,因此已被成功利用。然而,缓慢的扩散动力学和较低的电导率抑制了低温下的速率容量和长期循环性,造成了严重的容量衰减问题。为了解决这些问题,本文,常州大学《Carbon》期刊发表名为”Functionalized porous conductive carbon layer improves the low-temperature performance of LiFePO4 cathode material for lithium-ion batteries“的论文,研究通过溶胶-凝胶法结合高温煅烧路线合成了一种精心设计的三维多孔结构 LFP@NS。 此外,硫脲中的氮和硫可被诱导进入碳基质,从而产生更多的缺陷和活性位点。同时,N、S 共掺杂碳基质可形成锂离子的连续迁移通道,从而促进锂离子的扩散动力学和导电性。所制备的 LFP@NS-2 样品在室温(RT)下的放电容量为 158.5 mAh g-1,在1C下的放电容量为 101.3 mAh g-1(在 -20 ℃),并表现出显著的循环性能(在 10 C 室温下循环 2000 圈后的放电容量为 122.3 mAh g-1)。此外,为了研究期刊预处理电池在低温条件下的实际应用,LFP@NS-2||Gr 全电池与石墨(Gr)阳极相结合,在-20 ℃下于 1C释放出 100.1mAh g-1。因此,这项工作对设计低温下实际应用的高性能LIBs电极材料具有深远的意义。 2图文导读

图1. (a) XRD patterns of the LFP/C, LFP@NS-1, LFP@NS-2, and LFP@NS-3. (b-d) Rietveld refinement result of four samples. (e) Raman spectra of four samples. (f) The TGA curves of four samples. (g) Fourier transform infrared (FT-IR) spectra of four samples. (h) N2 adsorption/desorption isotherm of the LFP/C and LFP@NS-2. (i) Schematic of Li and electron transportation.

图2. (a-b) LFP@NS-2 的聚焦离子束扫描电子显微镜(FIB-SEM)图像。(c) LFP@NS-2 的 TEM 图像。(d-f)LFP@NS-2 的高倍率 TEM(HRTEM)图像。(g-h)LFP@NS-2 的晶格间距分析。(i) LFP@NS-2 中 C、O、P、Fe、N 和 S 元素的相应元素图谱。

图3. (a) LFP@NS-2 在 0.2C的初始充放电过程中的原位 XRD 图。衍射图样左图为时间-电压曲线。(b) 衍射峰演变的相应强度等值线图。(c) 磷酸铁锂在充放电过程中的相变示意图。

图5. (a) Initial galvanostatic charge–discharge (GCD) curves of the LFP/C, LFP@NS-1, LFP@NS-2, and LFP@NS-3 at 0.2 C. (b) Cycling performance of four samples at 1C. (c) Typical capacity voltage profiles. (d) Rate capability of four samples at different current densities. (e) Capacity voltage curves under different current densities. (f) Comparison of rate performances between LFP@NS-2 and previously reported literature. (g) Long-term cycling performance at a current density of 10 C.

图6. (a) Initial galvanostatic charge–discharge (GCD) curves of the LFP/C, LFP@NS-1, LFP@NS-2, and LFP@NS-3 at 0.2 C. (b) Cyclic performance of the LFP@NS-2 at 0.2 C. The inset shows four coincident GCD curves at different cycles. (c) Rate capability of four samples at different current densities. (d) Capacity voltage curves under different current densities. (e) Cycling performance of four samples at 1C. (f) Schematic illustration of LFP@NS-2||Gr full battery. (g) Charge/discharge curves of LFP@NS-2||Gr full battery at different rates. (h) Rate performance of the four samples. (i) Cycle performance of the LFP@NS-2||Gr full battery at 1 C. (j) The LFP@NS-2||Gr full battery to light the LED lamp.

图7. (a) CV curves of four samples. (b) CV curves of the LFP@NS-2 electrode for a series of scanning rates. (c) Electrochemical impedance spectroscopy of four samples. (d) Conductivity curves of four samples. (e) linear relationship between the peak current (Ip) and square root of the sweep rate (v1/2). (f) Relationship between Z′ and ω−1/2 of four samples. (g-i) DLi+ coefficients of LFP@NS-1, LFP@NS-2, and LFP@NS-3. 3小结 综上所述,通过溶胶-凝胶法结合高温煅烧路线,制备了一种具有三维多孔结构的新型锂离子掺杂碳基质材料。通过共掺杂碳基质构建了连续的锂离子迁移通道,降低了离子扩散能垒,提高了离子导电性和电荷扩散速率,改善了磷酸铁锂在低温下的电化学性能。因此,LFP@NS-2 表现出了显著的电化学性能,具有出色的比容量(0.2℃时 169.2 mAh g-1,-20℃时 122.3 mAh g-1)、卓越的速率容量(30℃时 108.1 mAh g-1,-20℃时 66.4 mAh g-1)和超强的循环能力(10℃时 122.3 mAh g-1,-20℃时 100.1 mAh g-1)。这项工作改善了磷酸铁锂在低温下放电能力差和循环寿命脆弱的问题,为设计高性能锂离子电极材料提供了新的见解和有效的策略。 文献:

|