联系我们
设为首页
收藏本站
 
站内搜索
 
您的当前位置:首页 --> 新闻动态
浙大高超团队在结构功能一体化石墨烯纤维研究方面取得新进展
出处:  录入日期:2020-09-27  点击数:69

    石墨烯具有优异的力电热性能,比如拉伸强度、电导率和热导率分别可达130 GPa、108 S m-1和5300 W m-1K-1,因此被认为是理想的结构功能一体化材料构筑基元。自碳纤维被发明以来,追求结构功能一体化碳质纤维就成为一项艰巨又重要的任务。传统碳纤维的制备方法主要是由聚丙烯腈纤维和沥青纤维经过高温热处理得到,在高温热解过程中,两者分别融合形成微小的石墨烯微晶。这些较小的石墨微晶间形成了众多电子和声子的散射,导致传统碳纤维在传导性方面有所欠缺,难以突破结构功能一体化的瓶颈。2011年,浙江大学高超教授团队提出氧化石墨烯液晶湿法纺丝法制备了由单层石墨烯组装而成的石墨烯纤维,被寄予厚望。但是,石墨烯纤维在纺丝成型过程中,石墨烯片会严重起皱,导致片片堆积疏松、片间作用力减弱、晶区尺寸不大,因此,其力学、电学、热学性能远没有达到单层石墨烯的水平。
  为此,浙江大学高超、许震教授团队与清华大学马维刚教授团队(共同通讯)合作,利用先前建立的溶剂插层塑化的效应对初生的氧化石墨烯纤维进行二次塑化拉伸,大幅度消除石墨烯原丝中的无规褶皱结构。经过后续高温热处理,沿纤维轴向平直排列的石墨烯大大促进了石墨烯择优取向的结晶生长,得到高取向度和大尺寸石墨微晶的石墨烯纤维。这种石墨烯纤维取向度可达92%,石墨微晶尺寸达174.3 nm,远大于传统碳纤维内部微晶尺寸。高取向与大晶体的结合使得石墨烯纤维兼具高强度(3.4 GPa)与优异的电学(1.19´106 S/m)、热学传导性(1480 W/m K),为推进结构功能一体化碳质纤维提供了新思路。这种塑化纺丝的工艺可以实现连续制备,有利于石墨烯纤维的工程化。该研究以题为“Highly Crystalline Graphene Fibers with SuperiorStrength and Conductivities by Plasticization Spinning”的论文发表在最新一期《Advanced Functional Materials》(DOI: 10.1002/adfm.202006584)上。论文的第一作者为高超教授团队的博士生李鹏。论文得到了国家重点研发计划、国家自然科学基金、浙江大学百人计划等相关经费的资助。
  研究亮点:
  (1)确证了氧化石墨烯二维平面分子的脆性-塑性转变,即插层诱导塑化效应。系统研究了塑性转变的条件与原理。当层间距处于1.2-1.8 nm之间时,氧化石墨烯纤维表现出最佳的塑性变形能力,极限伸长率可达34%。
  (2)建立多级塑化纺丝的连续制备方法,连续制备高取向与高密度的石墨烯纤维原丝。通过多级塑化纺丝,石墨烯纤维原丝中的无规褶皱结构被充分拉直,得到高取向与高密度的石墨烯纤维原丝,取向度达到86%,密度达到1.75 g cm-3。
  (3)石墨烯纤维原丝经过高温热处理,沿纤维轴向充分平直排列的石墨烯大大促进了石墨烯择优取向的结晶生长,得到高度有序与大尺寸石墨烯结晶单元的石墨烯纤维。其取向度可达92%,石墨微晶尺寸达174.3 nm。高取向与大晶体的结合使得石墨烯纤维兼具高强度(3.4 GPa)与优异的电学(1.19´106 S/m)、热学传导性(1480 W/m K)。


  图1 塑化纺丝制备高结晶的石墨烯纤维
  团队在之前研究石墨烯宏观组装体塑性变形的基础上,通过引入不同溶剂分子至饱和状态,营造了具有不同层间距的氧化石墨烯纤维,发现层间距在1.2-1.8 nm之间时,氧化石墨烯纤维可以表现出最大的塑性变形能力,极限伸长率达34%。同时揭示了由大尺寸氧化石墨烯组装的纤维可以表现出更高的塑性变形,为大尺寸氧化石墨烯构筑高性能石墨烯纤维提供了新思路。利用原位SAXS和光学显微镜,研究了纤维在最佳塑性加工阶段,在拉伸应变加载过程中结构的变化,发现在张力作用下,GO片被拉伸为高度平直构象,类比于高分子链的伸直链构象。

 


  图2 氧化石墨烯纤维塑性变形的应力-应变曲线,塑化的基本条件,以及塑化拉伸过程中的结构变化。
      团队设计制造了多级塑化纺丝设备,获得了高度取向的石墨烯纤维原丝。通过SEM可以观察到纤维的直径由14 μm减小至6 μm,且表面径向褶皱逐渐消失。纤维的取向度与密度都有较大的提升,由WAXS计算纤维的取向度达86%,密度达1.75 g cm-3。

 


  图3 多级塑化纺丝工艺与石墨烯纤维原丝的结构与性能
      进一步对纤维进行石墨化处理,得到了石墨烯纤维。在石墨烯纤维原丝中,石墨烯片沿着纤维轴向平直排列大大促进了石墨烯的择优取向结晶生长。通过对WAXS二维图沿不同方向积分,可以得到石墨微晶在不同方向的取向与结晶尺寸的信息。由方位角积分分析得到石墨烯纤维取向度达到92%。通过沿qy和qx方向上进行径向扫描获得100和002峰的半峰宽值,计算得到石墨微晶的横向长度和厚度,充分塑化拉伸后的石墨烯纤维晶体长度提高至174.3 nm,比未增塑的石墨烯纤维增加220%,这归因于塑化纺丝带来的致密且排列整齐的微观结构。高分辨率透射电子显微镜结果也直观证明了该结论。

 


  图4 石墨烯纤维的结晶结构
  高度取向与高度结晶的微观结构使得石墨烯纤维兼具高的拉伸强度与优异的功能性。经过塑化纺丝,石墨烯纤维的强度可以达到3.4 GPa,比未经过塑化纺丝的石墨烯纤维高200%,同时纤维还表现出突出的电学与热学的传导性,其导电率达到1.19´106S/m,导热率达到1480 W/m K。石墨烯纤维的高强度主要得益于其致密与规整排列的石墨微晶单元,大大减少了晶界缺陷与应力集中效应。石墨烯纤维优异的功能性主要来源于较大的石墨微晶尺寸,减少了电子与声子的散射。

 


  图5 石墨烯纤维的综合性能
  本文提供了一种制备结构功能一体化石墨烯纤维的思路和方法。通过对石墨烯宏观组装体塑化效应的新理解,制备了高度取向的石墨烯纤维原丝,并促进了石墨化过程中的择优取向结晶,得到高度有序与高度结晶的石墨烯纤维。这种多级塑化纺丝的方法和工艺便于规模化放大。该工作在高超教授团队前期积累和前人工作经验总结的基础上完成 (Nat. Commun., 2011, 2,571; ACS Nano, 2011, 5, 2908-2915; Adv. Mater., 2013, 25,188-193; Chem. Mater. , 2017, 29,319−330)。

北京现代华清材料科技发展中心版权所有 ©CopyRight 2011-2021
 京公网安备:11010802023391号 网站备案号:京ICP备10026874号-15